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Computation and measurement of Hall potentials and 
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The interaction was observed between a supersonic free jet of partially ionized 
argon and the magnetic field of a coil concentric with the jet. Nominal values of 
the parameters were: Mach number, 3; Reynolds number, 1000; magnetic 
Reynolds number, 0.2; magnetic interaction parameter, 1; Hall parameter, 1. 
The jet was strongly channelled. Axial and radial electric fields were observed in 
the jet with a net rise in potential across the interaction. 

These observations were consistent with predictions based on the single fluid, 
macroscopic equations, and a simple slug flow model. The current equation was 
solved to second order in the Hall parameter giving a closed form expression for 
the Hall potential which agreed with the experiments for weak fields. Flow 
perturbations were calculated for Mach numbers of 3.11, 6.08, and 10.05, 
neglecting Hall currents; the calculations are in qualitative agreement with the 
experiments and show Joule heating to be the main factor in perturbing the 
flow a t  high Nach numbers. 

1. Introduction 
Some exploratory experiments in an arc-heated wind tunnel showed a strong 

interaction between the gas flow and magnetic fields having various geometries 
and nominal values of 1000 G. There appeared a variety of phenomena which was 
not understood at that time, and this study was an attempt to shed light on the 
simplest magnetic-field configuration tested : that of gas flowing along the axis 
of a Helmholtz coil. 

The meanings of symbols used in the paper are defined in the following list. 

Notation 
a = jet radius 
b = plasma radius 
B = magnetic-field vector (3.14) 
cp = specific heat 

E = electric field vector 

j = electic-current vector 
K = Hall parameter, see equation 

L = characteristic length 
M = Mach number, see equation 

n, = ion number density 

e,, e,, e, = unit vectors 
(3.11) 

current p = pressure 
F, = Lorentz force due to nth-order 

t Present address : Mechanical Engineering Department, University of Wisconsin, 
Madison, Wisconsin. 
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pi  = impact pressure 
q = charge density 
R = gas constant 

R, = magnetic Reynolds number, see 
equation (3.12) 

s = entropy 
S = interaction parameter, see 

T = temperature 
V = velocity vector 
a = fractional ionization 

y = ratio of specific heats 
q, = permittivity in vacuum 
h = ion-slip parameter 
,u = magnetic permeability 
p = density 

equation (3.13) 

P =  4Wt-l)  

cr = electrical conductivity 
q5 = electrical potential 

w = cyclotron frequency 
q5* = barrier potential 

Subscripts 
0 = free-stream conditions 
1 = first order in K 

r ,  0, z = components in direction of 

s = stagnation conditions 
T = toroidal 
p = poloidal 

co-ordinate axis 

Superscripts 
* = dimensional quantities 

' (prime) = flow perturbations 

Axisymmetric flow through a Helmholtz coil is the simplest experimental 
configuration. Perhaps its most desirable feature for this study is the distinct 
nature of Hall effects. In  the absence of Hall effects, the induced currents are 
toroidalt and are given precisely by CTV x B even with non-uniform fields (so long 
as they are axisymmetric). The Hall effect introduces a poloidal electromotive 
field causing the appearance of poloidal currents and electric fields. This is in 
contrast to the two-dimensional rectangular geometry-the usual MHD power 
generator-where eddy currents always exist because of end effects, and the 
Hall effect modifies the existing current and electric fields rather than offering 
a distinct contribution (e.g. Podolsky & Sherman 1962). 

Another feature of the axisymmetric geometry is that currents are not small 
perturbations as in many problems of linearized magnetogasdynamics (e.g. 
Resler & McCune 1960); Joule heating appears to first order and the flow is not 
isentropic. Joule heating has not received the attention it deserves as a modifier 
of the gas motion, with most authors pointing to the Lorentz force as the major 
influence on the flow. Perhaps this is because most power-generation schemes 
and shock-tube experiments are limited to low Mach numbers, and the effect of 
Joule heating in the energy equation depends quadratically on the Mach number. 
However, in propulsion devices where the exit Mach number is high, Joule heating 
may overshadow the Lorentz force in shaping the gas motion, and the axisym- 
metric free jet is perhaps the cleanest geometry in which these effects can be 
observed. 

In  this investigation flow perturbations and Hall potentials were measured, 
and the magnetogasdynamic equations were employed to explain these measure- 
ments. Nominal values of the dimensionless parameters important in the experi- 
ment are: Mach number, M N" 3; Reynolds number, Re N" 1000; interaction 
parameter, S M 1; Hall parameter, K z 1 (based on L* = 13*5cm, a length 

t Toroidal, having only an azimuthal component; poloidal, having no azimuthal 
component. 
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representing the extent of the magnetic field). With supersonic flow, com- 
pressibility effects will be important. Since the Reynolds number indicates the 
ratio of inertial to viscous forpes, and the interaction parameter indicates the ratio 
of body to inertial forces, the values above imply that body and inertial forces will 
be comparable, and viscous forces will be negligible within the interaction 
region. (Viscous effects are important in the nozzle, with the boundary layer 
almost filling the nozzle exit.) A value of 1 for the Hall parameter implies that 
Hall currents can be important if the geometry of the system permits their 
closure. A small value for the magnetic Reynolds number indicates that induced 
magnetic fields will be small compared with applied magnetic fields, or that the 
field lines slip freely through the plasma. The problem is further characterized by 
the complete absence of any solid boundaries or electrodes in the system. 

A number of papers have appeared describing analytical and experimental 
investigations of the flow of plasma and plasmoids across magnetic fields. For 
the most part these concern very rarefied plasmas, usually fully ionized, and the 
analysis is based on particle orbit theory or the Boltzmann equation (see Gilleo 
1961 and Scott & Voorhies 1961), in contrast to the macroscopic treatment used 
here. More closely related to this study (and of great help to this author) is the 
work of Kemp & Petschek (1958) on the elliptical solenoid and its extension to 
compressible flow by Fishman et al. (1959) for a circular solenoid. The equations 
used here are identical with theirs, the analysis follows similar lines, and the 
major difference is in the velocity and magnetic field geometries and the boundary 
conditions. Ehlers (1961), Hains & Yoler (1962) andHains, Yoler & Ehlers (1959) 
have studied the flow perturbations for axisymmetric channel flow assuming a 
scalar electrical conductivity, a problem differing from the axisymmetric free 
jet only in the condition at the jet boundary. More recently, Hasimoto (1964) 
has determined the swirl velocity induced in a free jet by Hall currents using an 
analysis similar to this one. 

2. Experimental programme 
2.1. Apparatus and operating conditions 

The plasma tunnel consists of an arc chamber, a nozzle, and a tunnel chamber, 
followed by a steam ejector vacuum system. The arc burns between a +in. 
diameter thoriated tungsten cathode and a copper-anodenozzle assembly having 
a $in. diameter throat. Typical running conditions are 20 V at 500 amp-a power 
of 10 kW with about 25 % remaining in the gas. The plasma generator and its 
circuitry have previously been described by Lai, Gustavson & Talbot (1958) and 
Brundin, Talbot & Sherman (1960), and preliminary flow studies have been 
reported by Brundin et al. (1960), Sherman & Talbot (1962), and Talbot, Katz & 
Brundin (1 963). 

The anode throat is followed by a double-cone expansion section with an exit 
diameter of 5.5in. The argon is heated and ionized in the arc column, and a 
supersonic flow is developed in the expansion section continuing as a free jet 
into the tunnel chamber. The 4ft. diameter by 8ft. tunnel chamber has viewing 
ports, removable ends, side-access doors, and contains a traversing mechanism 
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for probe surveys of the flow; probes are positioned remotely with an accuracy of 
0.010in. Flow rates are measured with a flowmeter having a least count of 
0.02 glsec. Stagnation pressure is measured with a mercury manometer having 
a least count of 0.1 torr. Impact and static pressures are measured using an oil 
manometer having a least count of 0.001 in. oil (approximately 0.002 torr). 

Y 

-6 -4 -2 0 2 4 6 
z* (in.) 

FIGURE 1. Magnetic field calibration for a coil current = 27.8 amp. 

The magnetic field is supplied by Helmholtz coils having a 6in. internal 
diameter, 18 in. outside diameter, and 2% in. thickness. Magnetic field distri- 
butions, for a single coil, are shown in figure 1 and the experimental configurations 
are illustrated in figure 2. 

Figure 3 illustrates the Langmuir probe (hereafter called the E-probe) used 
in the experiments. The probe consists of three tungsten wires of 0.007in. 
diameter and 5 in. length (only one is shown in the figure). The current collection 
area is a length of 0.140 in. on one end of the wire, the remainder being insulated 
with a 0-001-0.003in. thick Also, coating and a &in. diameter ceramic tube, as 
shown in the sketch. The wires are supported in a rectangular brass block which 
is water cooled and shelters the connexions to copper lead-in wires. The probe 
block, cooling-water tubes, and lead-in wires are insulated with several coats of 
Sauereisen. 
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The arc chamber and arc circuit are electrically isolated from the tunnel 
chamber and from the Helmholtz coil. The Helmholtz coil is electrically isolated 
from the tunnel, and is coated with Sauereisen to prevent communication with 
the plasma stream. Hence, all induced currents must close within the plasma. 1 /;:;;tiC 

000 

if- Coil 

8 i n . d  

Anode/ \ 
Plenum chamber A (b) 

1 000 

--. 

FIGURE 2(a) Mach 3 configuration (no plenum chamber). 
( b )  Mach 5 configuration (plenum chamber). 

AllMach 3 datapresentedin this report were takenwith the following conditions: 
argon flow rate, 0.58 g/sec; arc voltage, 19 V; arc current, 530 amp; stagnation 
pressure, 250 torr; static pressure,? 0.050 torr. For this condition, nominal values 
for the flow properties are: stagnation temperature, 6260 O K ;  total density, 
0.24 x kg/m3; velocity, 2210m/sec; ion density, 3 x 101gions/ms; electrical 
conductivity, 500 mhos/m; magnetic Reynolds number, 0.19. Nominal values 
for the interaction and Hall parameters are: X = 0.13 x (B*)z; K = 0.01 B", 
with B* in gauss. 

The electrical conductivity is obtained from Spitzer's result (1956) for a fully- 
ionized gas, and the Hall parameter is estimated from the work of Landshoff 

This is the tunnel chamber pressure and is only representative of the static pressure 
in the jet. The static pressure is not measurable because of excessive viscous-interaction 
effects on pressure probes. 
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(1949) in the manner described by Fishman, Lothrop, Patrick & Petschek (1959). 
Thenominal values T, = 0.3 eV, ion saturation current = 5 mA, andp: = 0.7 torr, 
are used in the estimates. All stream properties have strong radial dependence 
(except TZ and @*). 

Brass probe block 

& in. diameter ceramic tube 

Ceramic coating 0.001 to 
0.003 in. thick 

/ 

FIGURE 3. E-probe. 

2.2. Experiments 
Modest magnetic field strengths resulted in a pronounced disturbance of the jet 
as shown in figure 4 (plate 1). Flow is from the nozzle exit at the left, through the 
coil at  the centre. An impact-pressure probe is visible downstream of the coil. 
The photograph shows approximately what is seen with the naked eye except that 
detail of the probe shock was lost in the printing process. With no magnetic field, 
the jet had a, 3 in. diameter central core of almost constant luminosity (the ‘core’) 
surrounded by a l&in. thick layer of varying luminosity (the ‘outer flow’). At  
1000 G, the jet was strongly channelled with a fivefold increase in core luminosity. 
The minimum diameter occurred near the coil centre, and the jet expanded 
rapidly downstream of the coil. 

The magnetic field perturbation was measured with a probe located as shown 
in figure 2 .  With a reading of 250G for the radial field component, the arc was 
shut off, and the meter showed no change (the minimum detectable change was 
1 G). Hence, the induced magnetic field was negligible, and simple estimates 
confirm this observation. 

Axial and radial pressure surveys (figure 6) show that the neutral atoms (which 
account for about 99 yo of the impact pressure) participate in the flow channelling. 
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Apparently the collision frequency is sufficient to drag the neutrals along with 
the ionized components. Owing to the limited axial extent of the tunnel traverse 
mechanism, data were not obtained for more than 3in. downstream of the coil 
centre. 

1 *4 

1.2 

1 .o 
:: 
- 0.8 2 

k2 

2 
E 0.4 

h 

0 
i2 

5 

0.6 
.c1 

P, 

H 

0.2 

0 
-6 -4 -2 0 2 4 -4 -2 0 f 2  +4 

z* (in.) Horizontal traverse (in.) 

FIGURE 6. Impact Pressure-Survey. - x -, coil current = 60 amp; 
--0--, zero coil current. 

Coil current (amp) 

FIGURE 7. Electron temperature versus coil current for r* = 1.0 in., z* = 1.5 in. 

E-probe surveys gave floating potential, saturated ion current, and electron 
temperature. The probe was operated near ion saturation to avoid undesirable 
effects such as shifts in floating potential and hysteresis. Since the electron 
temperature did not seem to vary significantly in the interaction region, varia- 
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tions in floating potential were taken as representative of variations in the plasma 
potential. Axial probe surveys showed that a potential was developed across the 
magnetic field region, which will be called the ‘barrier potential’, and which 
amounted to as much as 2V for strong interactions. Quite by chance, it was 
noticed that a voltmeter connected between the nozzle and the tunnel registered 
a change in potential equal to the barrier potential when the magnetic field was 
turned on. This is reasonable since the nozzle and tunnel chamber are connected 
only by the plasma stream, and any induced axial potential difference should be 
reflected in the tunnel-nozzle potential. This allowed the barrier potential to be 
measured directly, and recorded as a function of magnetic field strength on an 
(X, Y)-plotter. Such a curve is shown in figure 8 for weak magnetic fields, and the 
data are in good agreement with the analysis. 

3 
V - .3 
9 2  

, ’kl 
/ 

.,’. 

Electron temperatures were obtained from the Langmuir-probe data in the 
usual manner: (1) saturated ion current is subtracted from total probe current to 
yield electron current, (2) the logarithm of the electron current is plotted against 
the probe potential, and (3) kT, is taken as the logarithmic decrement of the 
curve. This presumes the plot is a straight line. This was true for data obtained 
with no magnetic field, but the plots became increasingly curved with increasing 
magnetic field strengths. This curvature could result from probe-surface effects, 
or it could indicate a non-Maxwellian distribution. Electron temperatures taken 
at r* = 0 and z* = 1.5 (figure 7) are representative of the rise in T,  that occurs 
throughout the magnetic interaction region. With no magnetic field, T, ranged 
from 0.28 to 0.40eV for all tests and all positions within the core. These values 
are lower than obtained previously by Brundin et al. (1960) and Sherman & 
Talbot ( 1962) using stagnation-point probes, a result consistent with the expecta- 
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( b )  

FIGURE 4. Flow photograph at Mach 3 (no plenum chamber). Photographs taken at  
& sec, f/ll, using Polaroid type 42 film. (a)  Zero coil current; (b )  50 amp coil current. 

OTIS (Fuciacing p .  48) 
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( b )  

FIGURE 5. Flow photograph at Mach 5 (with plenum chamber). Photographs takcn at 
sec,f /5.6,  using Polaroid type 42 film. (a )  Zero coil current; ( b )  50 amp coil current. 

OTIS 
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tion of electron heating in the bow shock on a stagnation-point probe. In  some 
recent work in the same apparatus, Robben (1963) has estimated electron 
temperatures of 0-17-0-30 eV in helium based on recombination spectra, and 
Brundin (1964) has measured electron temperatures of 0.20-0-30 eV in argon, 
using Langmuir probes. 

At Mach 3, the condition of all early tests, Joule heating was shown by the 
analysis to have a minor influence on the flow ($5). The analysis predicted that 
at high Mach numbers Joule heating would dominate in shaping the gas motion, 
and it would affect the flow quite differently from the body force. To confirm this 
finding, data were obtained at the somewhat higher Mach number of 5 (see 
figure 5 ,  plate 2), and, although the increase in Mach number is slight, there is a 
significant change in the shape of the perturbed jet. The higher Mach number was 
obtained simply by introducing a plenum chamber between the anode and the 
nozzle (figure 2), thereby removing a heat source from the divergent nozzle 
section. 

3. Basic equations and calculation model 
The experimental flow should be described by macroscopic equations for a 

thermally non-conducting, inviscid, compressible gas, with a current equation 
which includes the Hall effect. The following equations satisfy these conditions: 

v .pv  = 0, (3.1) 

pV.VV+(l/yMt)Vp-SjxB = 0, (3.2) 

(3.3) 
V . E  = 4, (3.4) 

V x E = O ,  (3.5) 

V.B = 0, (3.6) 

V x B = R , j ,  (3.7) 

(3.8) 

(3-9) 

v. vs = syM;( 1 + a)j2/p,  

ds = P / ( Y  - 1)) PPlP - rdP/PL 
cr(E+V x B) = j +Kj x B -h(j x B) x B. 

These were taken from the works of Kemp & Petschek (1958) and Fishman et al. 
(1959), and are discussed extensively in their work. The equations were made 
dimensionless using the variables 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

I r = r*/L*, 2 = z*/L*, V = V*/V;, p = p*/pg, 

q = L*q*/$VtB$, B = B*/B$, j = j*/cr*VgBt, cr = cr*/cr$, 

free-stream Mach number X0 = (p; Vg2/ypt )&,  

magnetic Reynolds number R, = VgL*:a*,u*, 

interaction parameter S = a,*L*B,*2/p$ Vg, 

Hall parameter K = v,*B,*K*, 

ion-slip parameter h = crgBtZh*. 

p = p*/pt, s = s*/R*, E = E+/V;B,*, 

and the parameters defined by: 

Fluid Mech. 24 4 
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Here p;, p$, V; and IT; are evaluated in the undisturbed jet, and B; is the value 
of the applied magnetic field a t  the coil centre. RM and h will be considered 
negligible. 

Calculations will be based on the slug-flow model illustrated in figure 9, which 
has the following conditions : 

u = 1 for r < b andallz, 

= 0 for r > b and all z, 

V = le, for r < a and z- f  -00, 

= O  for r a a  and z-+-00, 

1 (3.16) 

In  this model, radial distributions of velocity and electrical conductivity are 
treated as square waves of width 2a and 2b. The magnetic field is represented by 
analytical expressions which only approximate the field used in the experiments. 
They show the same general character as the curves in figure 1, and their use 
presents a real advantage in obtaining closed-form solutions in $4. The expressions 
do satisfy V . B = 0. The characteristic length of the problem L* is that value of 
z for which B, decreases by a factor of e .  In  the expression assumed for B,, its 
value increases linearly with r without limit. This is greatly in error when 2r is 
greater than the inside diameter of the Helmholtz coil and leads to the practical 
limitation a < 0.5, b < 0.5. This model is not essential to what follows, but it 
greatly simplifies the calculations. 

4. Electric and current fields 
The current equation is solved to zero order in S (no flow perturbations) in an 

attempt to describe the electric fields observed in the experiments. The solution 
is constructed as a power series in K with results carried to second order. This 
limits K to values of order unity, but the solution does shed light on the nature of 
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Hall effect in this geometry, and, hopefully, provides a stepping stone toward 
a complete solution. 

It is assumed that all variables can be represented by a series of the form? 

j = jo+jlK+j2K2+ .... (4.1) 

The current flowing in the absence of Hall effect j, is called the ‘zero-order 
current ’. The coefficient j, (n = 1,2,3,  . . .) is called the ‘nth-order Hall current ’. 
Substituting into equation (3.9) and separating terms in equal powers of K, we 
obtain 

where F-, = - a V x  B, and F, = jmx B (m=O, 1,2,  ...). 

F, is the Lorentz force produced by the nth-order current. The radius of con- 
vergence of this series will always be greater than K < 1, but no criterion has been 
established for its greatest lower bound. 

The current to each order j, is driven by an electromotive field equal to - Fn-,. 
If F,-, is solenoidal, the currents close without charge separation and E, = 0. 
However, if Fa-, is not solenoidal, there results a slight charge imbalance and an 
electric field (E,) which is just sufficient to yield a solenoidal j,. For odd n, the 
electromotive field is toroidal, hence solenoidal, with the result that j, is toroidal 
and E, = 0, j, and El are poloidal, j, is toroidal and E, = 0. This means that we 
need only solve for El to get the electric current to second order in K .  

4.1. Hall potentials toJirst order in K 
Taking the divergence of equation (4.2) (with n = l), 

V 2 # , = - V . F o = - V . ( u V x B ) x B  =-p( r ,x ) ,  (4.3) 

which in cylindrical co-ordinates takes the form 

(91)W + (l/r) (h), + (#l)zz = - a(r, 2). (4-4) 

q(r ,z)  is the first-order charge distribution, and in the slug-flow model it is 
antisymmetric about z = 0. Some care must be exercised in the treatment of 
p(r, x )  since the discontinuities in V and u a t  r = a and b result in a surface charge 
(at a or b, whichever is smaller). We consider only the case a < b. The boundary 
conditions are: 

(4.5) 1 #I = 0 at z = 0, 

V 4 , + 0  as 1.1 +co and Iz ]  +a, 
e,.V$, = 0 at r = b. 

The first condition is a convenient arbitrary choice. The second condition requires 
that the electric field (but not the potential) vanishes a t  infinity. The third 
condition prohibits current flow across the plasma boundary. This problem is 
analogous to heat conduction in an infinite cylinder with distributed heat 

t A similar procedure could be used to include the effect of ion slip. 
4-2 
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sources whose boundary ( r  = b)  is insulated. The solution is obtained using the 
finite Hankel transform? (see Sneddon 1946), defined by 

The k$ are roots of the equation 

and the inverse is 
(k i /b )  Jl(k;i) = 0, (4.7) 

and a solution satisfying the boundary conditions is 

for i = 0 and 
- gI(k i ,x)  = LJom [exp( - I k , ~ ~ ) l ) - o x p ( - k , ~ ~ ) ) ] q ( k , , t ) d t  (4.11) 

2ki 
for i =  1,2 ,3 , .  . .. 

Inverted by means of equation (4-8), the complete solution for is 

(4.12) 

Since both ($,), and tj(ki, x )  vanish at x = 0 and z+ f co, then, as shown by (4.9), 
#1 must vanish at these limits except for k, = 0. Hence, only the zero-order$ term 
contributes to a, net rise in potential across the interaction region, and the barrier 
potential is given to  first order in K by 

- 

(4.13) 

Now these results will be applied to the slug-flow model defined in equation 

(4.14) 

(3.16). a 
82 

q = V . F, = hl(r) z exp ( - 2x2) - h,(r) - {z2 exp ( - 2233, 

1 8  
r ar 

- a 
q(kt, z )  = %,(ki) x exp ( - 222) - 7i (k.) - (22 exp ( - 222)), 

ax 

where hl(r) = -- ((TVr3), h,(r) = (TV!?. 

The transform of q(r, z )  is 

(4.15) 

+ The author is grateful to P. L. Chambr6 for suggesting the use of the Hankel 
transform. 

$ Care must be exercised to avoid confusion here. This entire section concerns only the 
first-order Hall potential; yet its solution is in terms of an infinite series, and the terms 
of this series will be referred to as zero order, first order, etc. 
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where by (4.6) 

7i1(O) = 0,  

h,(O) = 4a4, 
- 

Zl(k$) = - a2{Jo(ki a / b )  - 2(b/k,  a) J1(k$ a /b ) } ,  

x2(k i )  = (ba3/ki) [{l -4 (b /k ,a )2 }J l (k ia /b )+  2 ( b / k i a ) 4 ( k i a / b ) ]  ( i =  1 , 2 , 3 ,  ...). 

0.02 

0.0 1 

0 
4 

-0.01 

- 0.02 

-1.5 -1.0 -0.5 0 0.5 1 a 0  1 *5 
z 

FIGURE 10. Potential to fist order in K for a = b = 0.5. ~ , From equation (4.16); 
_ _ _  , from equation (4.20). 

Substituting ij(ki, z )  into equations (4.10) and (4.11), and thence into equation 
,(4.12), one finds the Hall potential to first order in K :  

q51(r, x) = 2x ,/(77/2) (a4/b2){erf ( , / 2 2 )  - 2 4 2 / 7 7 )  xexp ( - 2 9 ) )  

where 

The first eight terms of the series were evaluated for a = b = 0.5, and the result 
is shown in figure 10. 
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4.2. Barrier potential 

From equations (4.13) and (4.154, the barrier potential is 

q51B = {4(2n)/l6) (a4/b2). (4.17) 

It is identical with that potential which would develop were the charge a t  each 
axial location z to be smeared uniformly across the disk of radius b and the 
problem treated as one-dimensional. In  dimensional form, the barrier potential 
to first order in K is 

9% = (zl(2n)/16)L*'V~B~K(a4/b2) + O(K3B3), (4.18) 

and this expression has been compared with the measured tunnel-to-nozzle 
potential in figure 8, assuming an effective slug diameter of a = b = 0.5. The 
agreement is quite good up to a coil current of lOamp (Bg NN 180G, K x 1.8, 
S M 0.4), after which the data depart from B2 dependence. 

It is interesting to compare the barrier potential with the electromotive force 
€ developed across the interaction region. The electromotive force is the integral 
of the electromotive field, i.e. 

z2 exp ( - 2z2) dz = { J(27r)/S} r2. (4.19) 

Its maximum value is &max = {,/(2n)/8}a2. If a = b, then q51B/&max = 4; only 
one half of the maximum e.m.f. is developed across the interaction region. If 
b > a, then q51B/&max = a2/2b2, and in the limit of large b the barrier potential 
vanishes. 

4.3. Small j e t  approximation 
We may obtain a solution valid for small b by use of Taylor series expansions for 
2, and 2, while retaining terms to order b4. The infinite series of equation (4.16) 
then become Dini expansions (see Watson 1944) of polynomials in r with the 
result that? 

q51(r, 2 )  = (b2/16) J@r) erf( 422) + [+-- &(r/b)2] b2zexp ( - 2z2) 

+$[Q-2(r /b)2+(r /b)4]b4(z2-  1)zexp ( -2z2)+O(b6). (4.20) 

This equation is compared in figure 10 (broken lines) with the result obtained for 
a = b = 0.5 from equation (4.16), and the agreement is excellent. The two curves 
for rlb = 0.5 are indistinguishable in the figure, their values differing by less than 
2 yo. The expression assumed for B in the slug-flow model (3.16) is only good for 
small values of b anyway, and is probably a greater limitation on the above 
expression (in fact on the entire analysis) than is the neglect of terms of order b6. 

Hence, this result will be used in what follows to obtain the currents to first and 
second order in K.  

t E. V. Laitone was helpful in clarifying this point. 
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0 -  

4.4. Hall current toJirst order in K 

Equation (4 .20)  can be used to present a simple picture of the Hall current 
structure. Substituting into equation (4 .2)  with n = 1 and retaining terms to 
order b3 we obtain 

jlz = P{(a - t(r/b)2} (222- l} exp ( - 222)  + O(b4), (4 .21)  

j ,  = bs(r/b) (1 - (r/b)2} (2, - 1) z exp ( - 229 + O(b5).  (4.22) 

A sketch of this distribution (figure 11) shows three sets of current loops each in 
the form of a ring vortex. Because of the factor exp ( - Zxa) ,  the centre loop carries 

I --- ' -- 
A B 

I I I I I I 

fhe largest currents and is responsible for the rapid rise of potential along the 
axis. The outer loops carry current in the opposite direction and cause a partial 
cancellation of the potential rise. Points A and B represent maxima and minima 
of the potential on the axis. It must be remembered that this is superimposed on 
the zero-order currents given by j = vV x B. 

4.5. Hall current to second order in K 
The second-order currents are given by equation (4 .2)  with n = 2 : 

j, = - j, x B (E, = 0). 

Using the approximate expressions for j, obtained for small b (4.21) and (4 .22) ,  
the second-order current is 

and the total toroidal current is 

j, = rz e-z2[1 + K2b2 exp ( - 2z2){&z2 + &(r/b),  - $}] ee + O(K4, b5).  (4.23) 

5. Flow perturbations 
To explain the observed flow perturbations, characteristics calculations are 

made using the linearized equations and the slug-flow model (with b 2 a ) .  Only 
the zero-order currents (j = vV, x B) are considered in the calculation. This 
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rather simple model proves quite successful in displaying the features observed 
in the experiments. The equations are linearized by introducing 

v = V,+SV’, p = l+Sp’, 

p = l+Sp’,  s = 0+SS‘, 
with the result that 

a 
-p’+V.V’ = 0, 
ax 

e,.VV’+(l/yNi)Vp’= j x B ,  

e,. Vs’ = yMg( 1 + a) j2,  

p’ = yp’+(y-l)s’, 

for r < a, and where j = e, x B. The Joule heating (j2) term is multiplied by Ng 
in the perturbation equations implying its dominance a t  high Mach numbers, 
and the calculations confirm this. 

These equations can be integrated along their characteristics which are defined 
by (see Courant 1962): 

( 5 - 6 )  i 
r = const. (twice), 

r +  ( l / P ) Z  = 7, 
r -  ( 1 / P ) Z  = Q 

where p 2  = &ti - 1. The first two Characteristics correspond to the integration 
with respect to z of equations (5.3) (z-component) and (5.4), 

J -03 

and for the slug-flow model 

By making suitable linear combinations of equations (5.2)-(5.5) (when written 
in cylindrical co-ordinates) one can obtain two additional equations which are 
integrable along the characteristics r,~ and c, 

(5.10) 
a 
ac 2 - (p’/yMi - K i p )  = c1- (72, 

(5.11) 
a 

2 & (P’IYMi + v:/P) = Cl + C2, 

where 

(5.12) I Cl = (j x B).e, = B,B,, 

C2 = (j x B).e,+M;(y- I) ( i + a ) j 2 - 1 p ,  

= R + M i ( y -  l ) ( l+a)B;-K/T.  

Note that Cl and C2 are functions of r and x ,  and C2 involves the unknown quantity 

K/r* 



Hall potentials and $ow perturbations in a magnetogasdynamic jet 57 

5.1. Numerical solution for a shg-$ow model 

Equations (5.10) and (5.11) cannot be integrated in closed form because v / r  
appears in G,. The solution is obtained by making a step-by-step calculation from 
left to right through a characteristic net. The methods are conventional, but 
several points should be mentioned: 

(1) In proceeding from net point A to net point B, C, and C, are evaluated at 
net point A .  

(2) The Mach net is based on Jfo; it does not depend on the calculated per- 
turbations. 

(3) The free jet boundary condition is imposed by requiring that p' = 0 at 
r = a. In  the calculation, the jet boundary is considered to always be at r = a,  
but the calculated values of V i  are not zero there. The first-order perturbation 
of the boundary (or any other streamline) is found by integrating V; with respect 
to 2. 

(4) The mesh sizes used in the calculations are given in table 1. 

Mo A? A, 
3.16 0.05 0.15 
6.08 0.05 0.30 
10.05 0.025 0-25 

TABLE 1 

Calculations are for a = 0.5, y = 5, a 2: 0 and No = 3.16, 6.08 and 10-05.f- The 
results (figures 12 to 16) give p' and V;, and with equations (5.7) and (5.8) all 
perturbation values can be determined. 

5.2. Biscussion of $ow perturbations 

All perturbations arise from electromagnetic effects through the body-force 
(F = j x B) and Joule-heating (Q = jz/v) terms in the equations of motion. Since 
there are no physical boundaries nor external electric circuits which extract 
energy from the jet, the flow is adiabatic, and the energy supplied to the fluid by 
Joule heating is exacted from the fluid by the body force, i.e. F. V = - Q. It is 
the component of F parallel to V (E in this problem) that contributes to an 
irreversible exchange of directed and thermal energies. Hence the axial body 
force and Joule heating are related, and their effect on a characteristics calcula- 
tion is confined to the function C,. In a one-dimensional analysis of a free jet 
(see Shapiro 1953 and use the condition dp = 0 )  their net effect is to decrease 
velocity, density and Mach number, and to increase temperature and jet diameter. 

There still remains the radial component of the body force Fr. It does no work 
on the flow (to first order) and results in no entropy production; it produces flow 
perturbations that constitute a reversible conversion of directed to thermal 

t A referee commented on the Iimited vaIue of a linearized analysis at Mach 10, a valid 
criticism in view of the magnitude of p' in f i w e  14. Since the actual perturbation in 
pressure is Sp', this limits S to rather small values for the Mach 10 calculation. 
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energy. The action of Er is like that of a boundary which channels the flow, yet 
does no work on the fluid. In  the problem under consideration, its effect is to 
channel the flow toward the axis for z < 0 and away from the axis for z > 0. Its 
effect on the characteristics calculation is confined to the function C,. 

1.c 

0.5 

P’ 
0 

- 0.5 

- 1.0 
0 0.1 0.2 0.3 0.4 0.5 

r 

FIGURE 12. Pressure perturbation, Mach 3.16, a = 0.5, y = 5. 

Turning now to the calculations, the most notable result is the striking con- 
trast between high and low Mach numbers (see p and V ,  curves, figures 12, 13, 
14, 15). This can be traced directly to the relative magnitudes of C, and C,. For 
the Mach 3.16 calculation, the entire jet is channelled toward the axis with rising 
pressure for z < 0-15. Irreversible phenomena play a minor role. The channelling 
is primarily due to the radial body force, and the pressure is perturbed as a 
consequence of the resulting radial motion. 

For the Mach 10.05 calculation the flow is split; that is, the core of the jet is 
channelled towards the axis while the outer portion of the jet is channelled away 
from the axis (see Vi curve, figure 15). In  this case the irreversible phenomena 
paly a dominant role. Joule heating, which is proportional to r2 and hence 
maximum at the edge of the jet, raises the pressure of the gas, forming a pressure 
‘hill ’. The flow splits, moving away from the hill radially in both directions to 
relieve the pressure. Upstream of the coil centre, the radial body force points 
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FIGURE 13. Radial velocity, Mach 3.16, a = 0.5, y = $. 
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towards the axis and aids in compressing the core of the jet. Its action causes the 
flow to ‘split’ to the right of the pressure-hill peak (rather than at the peak). 
Downstream of the coil centre, a second pressure hill is generated by the currents 
induced at exit from the interaction region. It is not nearly so large as the first, 
for here the flow is experiencing rapid expansion. 

The calculations were terminated at z < 3.5. Had they been continued, the 
jet would expand and contract in an oscillatory fashion, producing a flow 
structure similar to Mach diamonds. This was never observed in the experiments 
because of the overriding influence of viscosity for z > 3. 

The almost perfect linearity of V ,  with r for the core of the jet in the Mach 10.05 
calculation occurs because both E: and apt/& are linear in r. By equation (5.3), 
av,/az and its integral are both linear in r. 

Figure 16 shows the axial distribution of the perturbation pressure for the 
three Mach numbers. The initial part of the curve is almost independent of Mach 
number, but the maximum amplitude of the perturbation and the wavelength of 
the cyclical behaviour is strongly Mach-number dependent. Of special interest is 
the value of z for which p’ changes sign; this is strongly Mach-number dependent 
and may serve as a convenient measure of Mach number. But, as mentioned 
above, viscous effects could seriously limit such an application. 

6. Conclusion 
The Langmuir-probe surveys showed axial and radial electric fields to be 

present in the interaction region with a net rise in potential which is called the 
barrier potential. These fields are distinctly Hall effects, and a solution to first 
order in K based on a slug-flow model yields closed form solutions for the Hall- 
potential distribution (equations (4.16) and (4.20)). Because the slug-flow model 
is only representative of the experimental flow, and because the flow properties 
are not accurately known, quantitative comparisons are not made between the 
analytical and experimental potential distributions. Also, all such data were 
recorded with strong interaction (large flow perturbations), hence fall outside 
the range of the fist-order analysis. 

Barrier potential, however, could be obtained with low values of the magnetic 
field by observing changes in the tunnel-to-nozzle potential, and these have been 
compared with good agreement with the analytical result (equation (4.18)) in 
figure 8. The departure of the data from the B2 dependence predicted to first 
order in K is due to a combination of at least three factors: the higher-order terms 
in K become important and the jet velocity and diameter are changed by the 
interaction. All of these are of order B4 and contribute to the deviation in the 
same direction. 

Currents are obtained to second order in K for small values of b (equations 
(4.21), (4.22), (4.23)). 

The first observations of the jet were obtained at Mach 3 (no plenum chamber), 
and are in qualitative agreement with the Mach 3.16 calculation. At higher Mach 
numbers, however, the calculations reveal that Joule heating becomes the major 
modifier of the flow, resulting in a phenomenon termed ‘flow splitting’. The test 
Mach number was increased to about 5 (by installing a plenum chamber). This 
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is still rather low, yet the Mach 5 flow (figure 5,plate 2) clearly hasa different shape 
from that of the Mach 3 flow. The minimum cross-section is upstream of the coil, 
and the flow appears to expand throughout most of the interaction. Figure 5 
does not really show ‘flow splitting’ in quite the way that one would expect from 
the calculations; nevertheless, the outer flow does expand upstream of the coil 
even though the body force points towards the axis, and this is believed to be due 
to Joule heating. 

The author is grateful to P. L. ChambrB, W. Kunkel, C. L. Brundin, and to the 
students and staff of the Aeronautical Sciences Laboratory for their many con- 
tributions. The author is indebted to  F.S.Sherman and L.Talbot for their 
patience in supporting and guiding this work, and for the atmosphere of inquiry 
that they did inspire. The work was supported by the U.S. Air Force Office of 
Scientific Research under contract AF 49( 638)-502 and the Office of Naval 
Research under Contract Nonr-222(45). A more complete description has been 
given by Otis (1963). 
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